破解AI的思维“黑箱”

来源:FT中文网 | 发布: | 发布时间:2017-08-29,星期二 | 阅读:91

英国《金融时报》 理查德•沃特斯 旧金山报道

曾为硅谷最重大的一些技术突破做出贡献的实验室Parc的研究人员,刚刚接受了一个尤为棘手的挑战:教智能机器用人类的语言解释它们的思考方式。

该项目是得到美国国防高等研究计划署(Defense Advanced Research Projects Agency,简称Darpa)资助的几个项目之一,目的是找出人工智能(AI)领域最困难的问题之一的答案。

深度学习系统已经表明,它们可以在识别图像或者驾驶汽车方面与人类比肩,这种最先进的机器学习类型是最近AI领域多项突破的核心。但即使专家也无法确切说明它们是如何给出答案的。

“你实际上是在和一个外星人交谈,”主持该项目的研究人员马克•斯泰菲克(Mark Stefik)说,“这是一种不同的思维方式。”

人们难以精确理解机器深度学习所使用的人工神经网络是如何做出判断的,这可能会拖延AI的应用。Darpa对所谓的“可解释的AI”的追求反映出美国军方的需求——充分信任未来的战场机器人系统。

企业和寻求应用高级AI的其他各方都面临类似的难题。如果医生能够理解AI系统是如何提出建议的,他们可能已经在更大范围内使用AI系统了,Darpa主管该领域工作的项目经理戴维•冈宁(David Gunning)说。

“现在,我认为这种AI技术正在逐渐占领这个世界,(人们)将需要这个,”冈宁说。

AI系统是通过大数据集来训练的,这会帮助它们建立一种可以在之后用于真实世界的“理解”。但无法预见的情况可能会暴露出训练期间没有出现的缺陷。去年一名特斯拉(Tesla)车主在其特斯拉汽车的“自动辅助驾驶”(Autopilot)软件未能在阳光下发现一辆白色卡车后死于撞车事故,就是一个例证。

“你怎么能知道训练中有漏洞?”斯泰菲克说,“没有任何建立信任的过程。这是一个巨大的黑箱——它无法与你交谈。”

尝试教AI用人类的方式表达自己,是Darpa已经在美国资助的逾10个让AI更可解释的项目之一。

该研究预计将一直持续到2021年中,届时该研究可能会被植入目前海军正在测试的机器人舰船所使用的系统中。就如Darpa早期对互联网研究的资助一样,该项目有可能对这类技术的应用方式产生更广泛的影响。

Parc项目正以人的方式来询问AI的思维过程。研究人员的目的是利用教师来训练AI系统,像教人类学生一样,从简单的概念开始,然后建立更深的知识。斯泰菲克说,教师和机器之间共享对世界的理解或者本体论,将提供人与机器交流沟通所需要的共同认知。

斯泰菲克补充道,这种寻找更好的人机沟通方式的策略可能很适合未来的“混合劳动力”,那时会有许多人与AI一同工作。对智能机器的信任将来自于一种认知:机器也像人类学生一样,经历了同样严格的教学。

冈宁说,尽管这提出了人工智能更好地被人类理解的一种方法,但如果要解释深度学习中最先进的过程,这种方法可能会被证明依然存在局限性。他补充道,这个体系将受限于人类教师能够给机器的训练量。

Darpa资助的其他研究项目正使用深度学习系统来解释其他深度学习系统。“我们应该使用AI的办法来让其他AI方法更加可解释,”西雅图艾伦人工智能研究所(Allen Institute of Artificial Intelligence)的奥伦•埃齐奥尼(Oren Etzioni)说。

然而,专家警告称,尽管近期一些有希望的项目已经开始让我们了解深度学习的内部机制,最先进的AI可能永远无法被人类完全理解。

“我不期望我们能够完全解释最复杂的深度学习系统,”冈宁说,“情况很可能是,最先进的算法不会同最落后的算法一样可解释。”

根据研究人员,这可能催生不只用一种算法,而是使用几种不同算法的混合AI系统,还可能催生适用于AI系统,能够识别出什么时候AI系统无法胜任,需要转为人类手动控制或者直接关闭系统的技术。

“这些系统不可能百分之百完备——它们就是被这样设计的,”卡内基梅隆大学(Carnegie Mellon University)的机器人专家塞巴斯蒂安•谢勒(Sebastian Scherer)说,“无论何时,当你把这些系统放到现实世界中,你必须有所取舍。这是非常困难的。”

译者/徐行



 

版权声明

文章编辑: ( 点击名字查看他发布的更多文章 )
文章标题:破解AI的思维“黑箱”
文章链接:http://ccdigs.com/92846.html

分类: IT观察, 国际观察, 新闻视线.
标签: , ,

发表评论